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From 2020 to 2022, vivo Communications Research Institute released 3 white papers, “Digital Life 2030+" , “6G Vision,
Requirements and Challenges” and “6G Services, Capabilities and Enabling Technologies” . These three papers have
envisioned the bright future of 6G and introduced enabling technologies. In recent years, applications of artificial intelligence (Al)
in mobile communications have sprung up and convergence of Al and mobile communication is expected to drive the evolution
of future communication paradigms and netwaork architecture. In this regard, this white paper elaborates on the use cases and
design principles for the convergence of Al and communication, hopefully contributing to the development and realization of 6G
Al.
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2.1 Driving Forces and Use Cases of the Convergence of Al and Commu

In the past decade, Al technology has experienced rapid development and is stirring up a new round of technology revolu-

tion. Al'is a data-driven technology that can extract features from a large amount of data through machine learning tools such
as neural networks, and further execute actions such as judgment, classification, prediction, decision, and content generation.
Currently, Al has successfully solved a series of problems that were difficult to handle in the past, and has achieved a great
success in many areas such as image recognition and natural language processing in computer science, and motion control and

trajectory planning in robotics [1].

At the same time, mobile communication systems are also continuously evolving towards higher throughput, lower
latency, higher reliability, larger number of connections, higher spectrum utilization, etc. With the tremendous increase in the
requirements of mobile communication, traditional methods have encountered bottlenecks, for which Al is expected to provide

more efficient solutions.

Based on the research by both academia and industry, we have summarized the main directions or scenarios where Al can

play an important role and provide significant value in mobile communication systems.

(1) Scenarios in the communication system where implicit relationships, features or knowledge (especially localized ones)
has significant impacts on specific functions but hard to be established by traditional methods. Examples contain the impact of
wireless channels, channel variation patterns, the relationship between user location and wireless channels, the imperfectness
of power amplifiers (PA), and the variation patterns of business traffic. Using tools such as neural networks, Al can extract these
implicit relationships, features, or knowledge from a large amount of mobile communication data so as to model complex

problems more accurately, thereby improving the performance of communication system.
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(2) Problems in communication systems to which closed-form solutions are not easy to be obtained by traditional methods

in expected time or problems without explicit closed-form solutions.. Examples contain global wireless resource allocation,
multi-user pairing, coverage optimization, and capacity optimization. In traditional schemes, these problems are generally in the
form of optimization problems or traversal problems with very high complexity. Al can map the relationship between input
information (including states, conditions, historical results, etc.) and potential solutions through data-driven or model-driven
approaches, thus reducing the complexity of the communication system.

(3) The problem of joint optimization of multiple related modules in communication systems. Examples contain cross-layer
optimization, joint optimization of multiple related modules in multiple input multiple output (MIMQ) signal processing, and joint
source-channel coding. Currently, the optimization of different communication modules is done separately while the joint
optimization is rarely deployed due to complexities involved. Al can model multiple related functional modules as a neural
network, transforming the complex multi-module problems into simple data fitting or regression problems, thus obtaining near
global optimal solutions.



The aforementioned application of Al as a tool to assist mobile communication is known as Al for network (AI4NET) or

internal Al services. In addition, in the future, mobile networks will also provide relevant support for a large number of Al services.
With the development of Al, more and more Al services are needed by verticals. Many of these Al services require mobile networks
to provide higher throughput, lower latency, extreme capacity and ubiquitous coverage. For example, in the medical industry,
Al-assisted diagnosis and treatment require transmission of examination results with high resolution and interaction with low
latency; autonomous driving and drone control require the real-time feedback of a large amount of sensor data and the
transmission of command messages; in smart factories, the motion and trajectory information of robots should be transmitted
with low latency and high reliability to achieve efficient command and scheduling. Therefore, it is necessary to provide relevant
support for Al services through mobile networks with effective allocation of communication, computing, and storage resources.
This support for Al provided by mobile networks is called network for Al (NET4AI) or external Al services. In this paper, AI4NET is
the main focus with the understanding that NET4Al would also be supported effectively by 6G system as a service.

Al has many application directions in mobile communication systems, and there is a great potential for improving system
performance and reducing complexity. Below, we present the significance of Al in mobile communication through multiple use

cases.
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IE' 2.2 Use Cases of Convergence of Al and Communication

At first, we present applications of Al in extracting implicit relationships, features, or knowledge in communication systems.
The representative use cases include Al-based channel state information (CSI) feedback enhancement, channel estimation,
beam prediction enhancement, positioning enhancement, network selection, signaling storm prediction, user mobility optimiza-
tion, and PA nonlinearity suppression.

Al-based CSI feedback enhancement

Al-based CSI feedback enhancement can be further categorized into two sub-use cases, Al-based CSI compression and
Al-based CSI prediction.

In CSI compression, Al techniques are utilized to compress and reconstruct multi-dimensional channel state information,
thereby reducing the CSI feedback overhead and/or improving the CSI recovery accuracy. The mainstream solution for CSI
compression is the encoder-decoder architecture, where an encoder model deployed on the user device side compresses the CSI
and feedback the generated bit sequence, while a decoder model deployed on the network side decodes the received feedback
bit sequence to reconstruct the CSI. Generally, the encoder model used for CSI compression and the decoder model used for CSI
reconstruction need to be paired, i.e., a decoder can only effectively reconstruct one or more compressed CSI generated by the
corresponding encoders. Fig. 2-1 shows the spectrum efficiency gain of Al-based CSI compression over traditional Release 16
Type-Il codebook-based CSI compression (without Al). Detailed simulation parameters can be referred to [2] and the references
therein. From Fig. 2-1, it can be observed that Al-based CSI feedback is able to achieve approximately 10% spectrum efficiency

gain given the same feedback overhead.

14 13.19
12.50

11.41
12 1075
9.60
| I I
O I
64 96 116 180 244

feedback bits

S » (0]

N

The gain of spectral efficiency (%)
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Al-based CSI prediction extracts the hidden patterns of CSI variation over time and predicts the CSI of future moments
based on historical CSI. In this way, the aging issue of CSI feedback can be compensated. The basic scheme of Al-based CSI
prediction is to use multiple historical CSls as inputs to the neural network, and then obtain the CSIs of the specified future
moments through the neural network. Fig. 2-2 shows the average throughput gain that can be obtained by the Al-based CSI
compared with the scheme without prediction and the scheme using autoregressive (AR) based non-Al CSI prediction under
different resource utilization (RU). The detailed simulation parameters are provided in [3]. It can be seen that Al-based CSI predic-

tion can achieve considerable gains especially at the scenario with higher RU.
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Fig. 2-2. Mean throughput gain of Al-based CSI prediction
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Al-based channel estimation

Mobile communication systems require the use of reference signals for channel estimation. As the number of antennas at
base stations (BSs) and user equipment (UEs) increases, the overhead of reference signals gets heavier. To address this issue, Al
technology can be used to explore the correlation among channel responses on different transmission resources (such as time,

frequency, and space), and design low-cost, high-precision channel estimation methods.

Taking de-modulation reference signal (DMRS) as an example, channel estimation can be realized by using the channel
estimation results at the DMRS resources as inputs to the Al model, and the channel estimation on all the resources as outputs of
the Al model (as shown in Fig. 2-3). Since the relationship of CSls on different transmission resources is generally nonlinear in
nature, Al can achieve higher estimation accuracy or lower reference signal overhead compared to traditional interpolation
methods. In Fig. 2-4, the Al-based DMRS channel estimation is validated with the simulation parameters detailed in the literature
[4]. The blue line in the figure represents the DMRS estimation implemented with the conventional linear minimum mean square
error algorithm at 50% overhead (6/12) in the frequency domain, whose implementation requires the estimation results of the
tracking reference signal (TRS) as auxiliary information. The red line represents the performance obtained using Al-based DMRS
channel estimation at different frequency domain overheads (without relying on the TRS). It can be seen that the Al-based
scheme achieves higher estimation accuracy and lower block error rate (BLER) using a lower reference signal overhead and

without the assistance of TRS.

In 2021, vivo sponsored the Al-based channel estimation track in the second wireless communication Al competition of the
IMT-2020 (5G) Promation Group. 651 teams competed for over two months and designed sophisticated models, significantly
improving the accuracy of channel estimation, and pushing forward the convergence of Al and communication.
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Fig. 2-3. Illustration of Al-based DMRS channel estimation
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Fig. 2-4. Evaluation of Al-based DMRS channel estimation

In addition, for channel estimation of channel state information reference signal (CSI-RS), compressed sensing techniques
such as approximate message passing (AMP) can be considered to reduce the airspace reference signal overhead, i.e., using the
sparse port reference signal to estimate the channel of all ports. However, the main disadvantage of the AMP algorithm is that
the optimal sensing matrix and the shrinkage function in the iterative estimation algorithm cannot be obtained explicitly. In this
regard, as shown in Fig. 2-5, the process of the reference signal passing through the sensing matrix and the iterative process of
solving the AMP algorithm can be unfolded into two neural networks using the model-driven idea, in which the first neural
network determines the optimal sensing matrix, and the second neural network reconstructs the AMP iterative algorithm. With
end-to-end supervised training over a large amount of data, the optimal sensing matrix and shrinkage function can be

determined to improve the accuracy of channel estimation based on compressed sensing.
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Fig. 2-5. lllustration of Al-based low-overhead CSI-RS channel estimation
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Al-based enhancement of beam prediction

Al-based enhancement of beam prediction includes spatial domain beam prediction and temporal domain beam predic-
tion. Spatial domain beam prediction uses a small set of beam measurements from set B to predict the beam information of the
complete set A, where set B can be a subset of set A or different from set A (e.g., set B can be wide beams while set A can be
narrow beams). The method of temporal domain beam prediction is similar to that of spatial domain beam prediction, but the
input of the neural network includes measurement results from multiple historical occasions, and the output of the neural
network includes prediction results from multiple future occasions. The core idea of beam prediction is to improve the accuracy
of beam prediction and reduce the complexity of beam prediction while reducing the cost of beam measurement. Therefore,
assistance information may also be used in the input of the neural network to further improve the accuracy of beam prediction.

We have verified the Al-based beam prediction, and the specific simulation parameters are detailed in reference [5]. When
using 1/8 of the beam measurement resources of set A as set B, the Al-based solution improves the Top-1 beam prediction
accuracy relative to the non-Al solution from 12.5% to about 60%. When using 1/4 of the beam measurement resources of set A
as set B, the Al-based solution improves the Top-1 beam prediction accuracy relative to the non-Al solution from 25% to about
80%. Therefore, the performance of the Al-based solution is superior to the non-Al solution when using the same beam

measurement resources.

Al-based enhancement of positioning

Al-based positioning is to establish a mapping between channel responses and UE position through Al technologies.
Based on the output type of Al model, it can be further divided into two sub-use cases: direct Al positioning and Al-assisted
positioning. Direct Al positioning refers to the case in which the Al model directly estimates the UE position based on the channel
responses between the UE and multiple transmission/reception points (TRPs). Al-assisted positioning refers to the case in which
the Al model estimates the intermediate features, such as time of arrival (TOA), based on the channel respanses between the UE
and multiple TRPs. Then, with the position of multiple TRPs and intermediate features, the UE position can be further calculated.
Table 2-1 compares the positioning accuracy of different positioning methods in indoor-factory non-line of sight (NLOS) scenari-
0s. Specific simulation parameters can be found in [6]. Compared with traditional localization methods based on downlink time
difference of arrival (DL-TDOA) measurement of the first path, Al-based positioning reaps a significantly improved performance
in terms of positioning accuracy.

Table 2-1. Positioning accuracy of different positioning methods in indoor-factory NLOS scenarios

o Positioning
Positioning methods Measurement Model output accuracy (90% UEs)
DL-TDOA First-path delay Location 32.12m
Direct Al positioning Channelimpulse response Location 0.99m

Al assisted positioning Channelimpulse response TOA 0.73m
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Al-based power amplifier (PA) nonlinearity suppression

Orthogonal frequency division multiplexing (OFDM) system has the advantages of anti-interference, anti-fading, and high
spectrum utilization, and thus is widely used in the era of 4G and 5G. However, OFDM also has the issue of high peak-to-average
power ratio (PAPR), which can cause PAs to enter the saturation region leading to nonlinear distortion. In order to improve the
linearity and efficiency of the system, it is necessary to reduce the peak-to-average power ratio of the OFDM signal. Recently,
deep learning has inspired researchers to use data-driven or model-driven methods to counteract the effects of PA nonlinearity.
As shown in Fig. 2-6, in the Tone Reserve (TR) algorithm for reducing PAPR, Al technology can be used to capture the implicit
relationship between the OFDM signal and the optimal peak cancelling signal. In the inference stage, when a new OFDM signal
is input, Al will provide the corresponding optimal peak cancellation signal. Through simulation verification, in the case where
the reserved subcarriers account for 25% of the total subcarriers, the Al-assisted TR algorithm can reduce PAPR by an additional
3dB compared to the traditional TR algorithm. Similarly, under the same PA power back-off, the Al-based TR algorithm can
achieve lower error vector magnitude (EVM) [7].
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Fig. 2-6. Schematic diagram of Al-based TR technology

Similarly, in the digital pre-distortion (DPD) technology, Al can learn the rules of nonlinear transformation of signals by
studying a large number of PA input and output signals. As shown in Fig. 2-7 by performing a reverse operation (i.e., DPD) on the
signal input to the PA through a neural network, the nonlinear distortion generated by the PA on the original signal can be
cancelled out. Similarly, through simulation verification, Al-based DPD can reduce EVM by approximately 5% compared to
traditional DPD [7].

X —— | IFFT » Al

DPD

Fig. 2-7. Schematic diagram of Al-based DPD
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Al-based mobility optimization

Mobility managementis a fundamental mechanism for mobile communication systems, which can provide UE with service
continuity. For the traditional method, itis challenging for a trial-and-error-based scheme to achieve nearly zero-failure hando-
ver. In this case, Al can be utilized to optimize the mobility management. Al-based mobility optimization mainly relies on the
prediction of UE trajectory and cell resource status, to determine the appropriate target cell and handover timing for the UE. The
probabilities of handover failure and unintended events (e.g., handover to the wrong cell) are expected to be reduced. The
typical inputs of modelinference include radio resource management (RRM) and the location of UE. The model can be deployed
at either network side or UE side. If the model inference functionality is deployed on the network side, the UE needs to report the
measurements and/or location. This may be problematic if users turn off location reporting due to privacy concerns. Compared
with the network-sided model, the UE-sided model can achieve more real-time RRM measurement prediction, target cell predic-

tion or unexpected event prediction and thus improve user mobility experience.
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Taking RRM prediction as an example, the procedure of Al-based mobility optimization is illustrated in Fig. 2-8. To be

specific, when the trigger condition of the measurement report is met at To, UE can predict the RRM measurement of serving cell

and neighbor cells within the duration of TTT (time-to-trigger). If the RRM measurement prediction results within the TTT meet

the reporting condition, the UE may send the measurement report immediately to avoid handover failure due to the inability to

receive the handover command. In addition, the UE may report the predicted RRM measurement for a longer period, which can

be used for target cell and handover timing determination to avoid the occurrence of radio link failure shortly after the hando-

ver.
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Fig. 2-8. Al-based maobility optimization with RRM prediction

The corresponding evaluation results in a dense urban scenario are illustrated in Fig. 2-9. Compared with legacy hando-

ver, the Al-based handover can significantly reduce the probability of handover failure and unintended events (e.g., short time

of stay, ping-pong handover).

Handover failure rate
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Fig. 2-9. Handover failure rate (left) and ping-pong handover rate (right) of legacy handover and



_ vivo Communications Research Institute

Al-based UE Access Network Selection

There are scenarios where multiple radio access types coexist and complement each other in the mobile communication
systems. Taking the current 5G as an example, although 5G deployment has been carried out on a large scale, but ubiquitous 5G
NR (New Radio) coverage may not be accessible for a lot of areas. This similar situation may also exist in the 6G era with the
expectation that several radio access technologies (RATs), e.g., 4G, 5G and 6G, coexist for some time.

Different access technology has different advantages, e.g., 4G LTE has lower frequency spectrum and higher latency, but
better network coverage; vice versa, 5G NR has higher frequency spectrum and lower latency, but limited coverage; for 6G, there
may still exist tradeoff between the coverage and capacity. From the perspective of applications, different applications have
different requirements for network KPIs, for example, augmented reality (AR), virtual reality (VR), etc. with high requirements for
rate and latency are more suitable for using high-frequency and large-bandwidth RAT, while those services with high mability
requirements is more proper to choose RAT with a large coverage area to avoid frequent switching. As shown in Fig. 2-10, Al can
be used to analyze the historical data of end users and 6G network, obtain Al model implying UE behavior and network perfor-
mance characteristics. Based on the Al model, it can predict what kind of service the UE is using or will use, and which cell or
specific location it will move to, and predict corresponding network load and performance for different RAT types or Access types.

Based on this information, the 6G network can thus decide the optimal access network selection strategy.

()
A Historical
data

Al model training

N >
N > —
AT Model Prediction
\ Current network (UE behavior,
(((;))) T data trajectory, network load)
6G Network selection strategy

Fig. 2-10. lllustration of Al-based UE Access Network Selection
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Al-based signaling storm prediction

With the rapid growth of network subscribers, the risk of signaling storms is growing significantly. Empirically, signaling
storms seem to lead to failures with a large scope and long duration, having a large negative impact on user experience and the
reputation of the operator, so the prevention of network signaling storms is the most important challenge for operators. In the
past, operators could only backwardly detect signaling storms at the network operation and maintenance level, and then
artificially analyze the root cause and traffic diversion. This process often depended on the experience of experts, which usually

took a few hours or even several days.

with the use of Al technology in mobile communication networks, 6G networks is expected to perform signaling storm
prevention with the assistance of Al. As shown in Fig. 2-11, the 6G network Al entity collects a large amount of data such as
network metrics, behavioral performance, network configurations, UE behavior, etc., in both normal scenarios and network
signaling storm scenarios. Based on these data, the Al model is trained to mine the correlation between these features and the
occurrence of signaling storms. This Al model is used to predict the probability of signaling storms occurring in the network, and
even accurately predict the network performance and other derivative consequences of signaling storms, which can be used as
a network warning message or adjustment recommendation to inform the corresponding equipment or personnel in advance.
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data
UE Al Model Training

N ()

0 - A

N s
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UE RAN
[] ,Zf/ Current Al Model Inference
UE network

data

Signaling storm warning
network state prediction,
mitigation recommendation

Fig. 2-11. illustration of Al-based signaling storm prediction

Next, we will introduce Al applications to scenarios where closed-form solutions are not easily obtained by traditional
methads in the expected time or problems without explicit closed-form solutions. The representative use cases are Al-based

wireless resource management, netwark energy saving, and load balancing.
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Al-based wireless resource management

There are many tasks (or use cases) in the access network, which is a continuous
process of adjustments based on changes in the wireless environment, load, number
of users, etc. For example, this kind of tasks includes user scheduling, access control,
resource allocation, etc. The decision given in each round thereof not only affects the
system performance in the current round, but also affects the decision in the next
round. Reinforcement learning is a technical tool to solve this kind of problems.
Reinforcement learning obtains the static and dynamic characteristics of the system
and environment through interaction with the system and environment, so as to
adaptively realize the optimal strategy. Currently, reinforcement learning is studied in
many aspects of wireless resource management, such as spectrum resource alloca-
tion, dynamic power allocation, scheduling in sidelink and unmanned aerial vehicle
(UAV) communication, access control and slicing resource allocation in large-con-
nectivity communication, etc. Compared with the traditional schemes, the wireless
resource management based on reinforcement learning can adapt to the system
and environment more flexibly and achieve higher system performance and resource

utilization.

Taking user scheduling as an example, vivo hosted the Al-based wireless
resource scheduling track for cell free scenarios in the 6GANA 6G Network Al
Challenge in 2023. 72 teams competed in two rounds of the preliminary and rematch
rounds, designing high-performance Al models that significantly optimized the
resource allocation strategy and improved the overall performance gain of schedul-
ing. Al-based wireless resource scheduling takes the current channel information as
well as the historical scheduling rate as the input to the Al model, and takes the
time/frequency/air domain resource allocation policy at the future moment as the Al
output. In Fig. 2-12, we show the scheduling scores of the Al-based scheduling
scheme and the traditional greedy scheduling scheme. The scheduling score
integrates the overall scheduling rate of the network and the scheduling fairness of
individual users. Higher scores indicate higher overall network throughput and better
user scheduling fairness. It can be seen that the Al-based scheme can achieve better

scheduling than the traditional non-Al scheme.
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Fig. 2-12. Scheduling scores of the Al-based scheduling scheme and the
traditional greedy scheduling scheme



vivo Il

Al-based network energy saving

The growing demand for communication services has led to a sharp increase in the number of network sites and network
energy consumption. At the same time, the need for network energy saving by network operators is becoming urgent. Currently,
network energy saving is mainly achieved through deactivation/activation at the cell level. To be specific, when the cell service
load is lower than a threshold, the cell can be deactivated, and the service can be offloaded to neighbor cells to reduce the
overall network energy consumption. When the load of the neighbor cell exceeds a threshold, the deactivated cell can be
requested to be activated to avoid network congestion and impact on user experience. However, making decisions of deactiva-
tion/activation based on the load of a single cell may result in frequent changes of cell status, leading to massive user service
interruption. Traditional methods are limited by computational complexity and it is difficult to directly obtain the optimal activa-
tion/deactivation decision for a large area of cells, making itinfeasible to achieve optimal network energy efficiency. The general
procedure of Al-based network energy saving is shown in Fig. 2-13. With the prediction of UE trajectories and resource status of
each cell, the network may determine candidate cells for activation/deactivation. On the other hand, Al can balance network
energy consumption and service quality, and maximize network energy efficiency. A similar approach can also be applied to
load balancing, having different service types allocated reasonably in various frequency bands to optimize network spectrum
efficiency.
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Input of UE ______II_____

Ve ~
Predicted trajectory

Predicted resource

| |
| |
| |
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| |

status

Cell activation/

deactivation

handover

Fig. 2-13. Al-based network energy saving

Finally, we will introduce scenarios where Al is applied to joint optimization of multiple modules. The representative use
cases include joint optimization of related functions in MIMQO signal processing, joint source-channel coding, cross-layer optimi-

zation, etc.
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Al-based joint optimization of related functions in MIMO

One advantage of Al is its ability to explore implicit relationships behind data. In communication systems, some functions
are related but their specific relationships cannot be explicitly represented, leading to limited effectiveness of joint optimization.
To address this, Al can be used to jointly optimize multiple related functions. The system capacity of MIMO is determined by
precoding, which is generated based on channel estimation (based on channel reciprocity for time-division duplexing systems,
and based on channel feedback for frequency-division duplexing systems), which in turn is related to the design of pilot
sequences. Although single-module Al optimization can improve the performance of each module, it cannot achieve global
optimality in terms of overall system performance. To address this, we can consider modeling the related functions in MIMO
signal processing as a joint problem, establishing a global loss function, and obtaining the optimal MIMO transmission scheme.
In Fig. 2-14, taking 2-user MIMO as an example, CSI-RS sequence selection, channel feedback, and precoding matrix generation
can be achieved through three sub-neural networks. The parameters of the first sub-network are the reference signal sequences
obtained through neural networks, the second sub-neural network generates CSI feedback bits, and the third sub-neural
network generates precoding matrices. During training, these three sub-networks are concatenated. The spectral efficiency is
used as the global loss function to obtain the parameters of each sub-neural network through gradient descent. The global
neural network obtained in this way accommodates the dependencies between multiple sub-networks, achieving higher
spectral efficiency than the separately trained scheme.
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Fig. 2-14. Joint optimization of CSI-RS sequence selection, channel feedback and precoding matrix generation
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Al-based joint source-channel coding

Traditional joint source-channel coding allows users to change source coding parameters based on channel or network
conditions, or to select channel coding, modulation, and network parameters based on source characteristics. However, its
effectiveness highly depends on the expert knowledge. In recent years, the development of Al has provided new ideas for the
design of joint source-channel coding. Among them, the structure of auto-encoders (AEs) is very suitable for implementing joint
source-channel coding. The encoder takes the source information and the current channel information as input and obtains the
bitstream signal to be transmitted through the forward propagation of the neural network. The decoder at the receiver is trained
together with the encoder to implement the inverse operation of the encoder. Therefore, the original information can be recon-

structed from the received bitstream.

In addition, joint source-channel coding can also be designed based on the idea of semantic communication. First, the
multidimensional semantic features of the source are extracted using neural networks. Then different coding strategies are used
based on the importance of each dimension of semantics according to specific a priori knowledge. In this way, the characteristics
of the known channel can be better utilized. For example, in image and video transmission, using semantic communication
based joint source-channel coding may achieve better quality compared to traditional image compression coding. In addition,
CSI compression can be viewed as a special joint source-channel coding problem where the efficiency of CSI feedback can be
further improved by using the idea of semantic communication. Specifically, the original CSI at the transmitter corresponds to
source information, and the CSI information to be fed back corresponds to the bitstream after joint source-channel coding, and
the receiver performs inverse processing to reconstruct the original CSI.

Al-based cross-layer optimization

Cross-layer functions can be jointly optimized for better performance. For example, different traffic demands and service
characteristics will result in different optimal transmission resources and transmission modes. However, the functions of the
different layers are not concatenated together and the objectives of optimization are different for the different layers, so it is
difficult to give a closed-form solution directly. To address this problem, resource allocation and traffic/service prediction can be
modeled as a joint task. Specifically, using historical traffic, services, resource allocation as inputs, with the objective of optimiz-
ing the final performance (e.g., throughput), the Al model can recommend a resource allocation result. Similarly, both the
adaptive modulation and coding (AMC) at the physical layer and hybrid automatic repeat request (HARQ) at the data link layer
are functions that dynamically adjust the transmission configuration. They can also be viewed as a joint task and a cross-layer
joint optimization can be achieved based on Al. The goal of cross-layer optimization is generally the final performance of the
network. As a result, there is a need to couple the Al training and reasoning process with realistic systems, which is difficult to be
achieved by using supervised learning. Reinforcement learning is a solution to this problem. During the model training, the
recommended configuration given by the Al model can be applied to the system, and the response of the system (for example,
the final performance of the network or related derivative indicators) can be used as a reward or score to guide the optimization
of the Almodel. When such an iteratively optimized model is trained, it can be deployed in the actual system to flexibly adapt to
the change of environment.

Along with the further research in academia and industry as well as the wider use of Al technologies and resources, there
will be more valuable use cases emerging to continuously improve the performance of mobile communication systems. For
example, Al has great potentials in the fundamental physical layer design such as waveform design, modulation and demodula-
tion, channel coding, signal detection, signal equalization, as well as in advanced design such as joint design of transceiver,
transmission mechanisms based on end-to-end architectures, e.g., transmission without pilot or cyclic prefix.
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Al will be a native and ubiquitous technology that provides comprehensive support for 6G. In order to leverage Al in 6G, itis
necessary to start from several design principles that combine the richness of use cases with the efficiency of the system. Given
that 5G has already explored the application of Alin mobile communication, we first summarize the current state of the applica-
tion of Al in 5G mobile communication. Secondly, we elaborate on the basic logic of native intelligence, and propose design
principles from multiple dimensions to achieve deep convergence of Al and communication.

The standardization work of applying Al to mobile communications has been carried out successively in the 3rd generation
partnership project (3GPP). 3GPP has launched a number of projects to standardize the application of Al to mobile communica-
tion systems, such as Al/ML for OAM, AI/ML for NG-RAN, Enablers for Network Automation for 5G, 5G Systems Support for
Al/ML-based Services, and Al/ML for Air Interface. In terms of use case studies, 3GPP has launched Al-based enhancement
studies in the core network, radio access network (RAN), and physical layer. Among these use cases introduced in Chapter 2,
Al-based CSI feedback enhancement, beam prediction enhancement, and positioning enhancement have been studied in RANT;
Al-based mability optimization, load balancing, and network energy saving have been studied in RAN3; and Al-based access
network selection has been studied in the core network. In 5G, Al performs plug-in optimization for specific problems case by

case. This approach is a natural extension of the 5G network and provides some performance improvement for specific problems.

Based on the study of 5G, we start from the basic logic of native intelligence and propose multiple design principles for the

convergence of Al and communication to build a solid foundation for 6G.




_ vivo Communications Research Institute
- 3.1 Basic Logic of Native Intelligence in 6G

The native intelligence in 6G discussed in this white paper is elaborated from the perspective of AI4NET. The native
intelligence in 6G refers to the native integration of Al capabilities into the 6G network. Al was considered in the design of the 6G
architecture at the beginning and 6G will reserve the functions, interfaces, capabilities, and signaling structures required for
various Al use cases to realize the deep convergence of Al and mobile communication networks. A large number of use cases
for empowering 6G with Al are introduced in Chapter 2 of this white paper. With the wider use of Al technologies and further
development of Al resources, there will emerge more and more high-value use cases in 6G. If we continue to design protocols
foreach use case one by one as in 5G, the complexity and redundancy of the protocols will be significantly increased. Therefore,
we believe that the architecture design should be based on logical functions and logical nodes to accommodate the Al use
cases in 6G. This is because the physical execution location of different use cases is not exactly the same (for example, beam
management involves UEs or base stations while positioning enhancement involves UEs, BSs and location management
function related entities), designing the architecture based on physical nodes will not be paossible to accommodate different use
cases. While on the other hand, the logical functions implemented by different use cases can be unified under a same frame-
work, e.g., by referring to the logical functions of data collection, model training, model deployment, model inference, and

model management. The specific contents of each logical function are as follows:

Data
collection
function

obtain data for model
training, model inference,

and model management.

Model
training
function

conduct model training
based on the collected data
to obtain models for infer-
ence.

Model
deployment
function

deploy the trained model to
the corresponding node to
complete the process of
validation and registration.

Model Model
inference management
function function

input data into the trained control the state of the

model, get the correspond- model, including several
ing output results and sub-functions such as mon-
apply them to the commu- itoring the performance of

nication system.

the model, and completing
the adjustment of the

model (including switching,
activation/de-activation,
fallback, etc.).
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Correspondingly, the above logic functions need to be executed in one logic node or collaboratively in multiple logic nodes.
The aforementioned logical nodes include data sources, training nodes, inference nodes, execution nodes, and management
nodes. Among them, the inference node obtains the output of the Al model, and the execution node applies the output of the Al

maodel to specific functions of the communication system. In most cases, the inference node and the execution node are the
same one. Fig. 3-1 shows the correlation between logical functions and logical nodes.
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Fig. 3-1. Correlation between logical functions and logical nodes

After designing a protocol framework based on logical functions and logical nodes, it only needs to map logical nodes to
actual physical nodes in specific use cases. In practice, multiple logical nodes may correspond to a single physical node. In this
case, the interaction process between these logical nodes will be realized within the physical node without signaling support. In

the following, we explore the design principles of the convergence of Al and communication in five dimensions:

® |ifecycle management ® Distribution of Al logical function ® Sharing of Al resources within device

96

e Learning frameworks e Evolution
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- 3.2 Native and Unified Lifecycle management

In the 6G Al system that converges Al and mobile communication, an Al model needs
to go through the process of data collection, model training, model transfer, model valida-
tion, model deployment, model inference, model monitoring, and model adjustment,
forming a variety of functions in the lifecycle of Al models. Lifecycle management is a
necessary and unique operation for Al applied in mobile communication. The main reason
is that Al models are trained based on data, and the effectiveness of the model is closely
related to the quality of the data, the similarity between the training and application
environment. It is inevitable that there is a mismatch between the Al model and the
application environment, which causes the insufficient model generalization. Therefore, it
is necessary to manage the lifecycle of the model.

The logical functions and logical nodes introduced in the previous section are
applicable to all Al use cases in mobile communication systems. Therefore, a unified
lifecycle management can be realized based on these logic nodes and logic functions.
Furthermore, by splitting the lifecycle management process of Al models, we find that the
lifecycle management is a closed-loop process. As shown in Fig. 3-2, this closed-loop
process can be further divided into a large and a small loop. The focus of the large loop is
to acquire a novel model, which can be realized through data collection-model
training-model transfer-model registration-model inference-model monitoring. The focus
of the small loop is to perform model adjustment, which is mainly realized through data
collection-model adjustment-model transfer-model registration-maodel inference-model

monitoring.

However, data collection and model transfer are not mandatory for the small loop,
depending on the specific model adjustment scheme. It can be seen that there is an
overlap between the large and small closed loops, i.e., model registration, inference,
maonitoring. These functions are mainly related to the execution of one model. In addition,
data collection in large loop generally involves a large amount of data collection, which is
mainly collected offline, while data collection in small loop generally involves a small

amount of data collection required for model fine-tuning, which is mainly collected online.

odel A

transfer Model
registration

\

Model Model Model
training adjustment inference

Model

monitoring
Data
collection \%

Fig. 3-2. The large and small closed loop in the lifecycle management
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In practice, all use cases can operate based on such a lifecycle management that includes both large and small closed

loops. The large loop is executed when a new version of the model is required, and the small loop addresses the issues when

maodel adjustments are required as users move around and the environment changes.

A key function in the unified lifecycle management is data collection. How to realize data collection based on a unified

scheme is critical. We found that both user-plane and control-plane that have been defined in 5G cannot satisfy the needs of

data collection for Al:

Currently, the capacity of the control plane is 9000 bytes for a single transmission [8], which
cannot meet the transmission demand of big data.

policy would impact user’s preference.

The user plane can only transmit data between the UE and the user plane function (UPF), for
example, if the UE transmits data through the data plane, the base station cannot obtain the
data. In addition, user-plane data collection may need additional user consent since charging

Data collection using control plane and user plane has the problem of duplicate collection of

the same or similar data.

To solve the above problems, we propose that 6G Al
should unify data collection with the help of data plane,
as shown in Fig. 3-3. The data interaction in data plane
has the diversity of one-point-to-multipoint, multi-
point-to-one-point, multipoint-to-multipoint. The termina-
tion location of the data can be in the core network, radio
access network, and UE. Therefore, the data plane can
efficiently and flexibly support various data exchange.
Depending on the quality of service and the hierarchy of
data, the data control function in data plane is responsible
for the creation, modification, and release of data transfer
channels between the data provider and the data con-
sumer. Here, the data provider is the aforementioned data
source logical node, data consumer can be the training
node, inference node and management node. Besides,
the data control function also contains a data collection
management subfunction that processes received data
requests, including merging identical data request, and
generates data collection control information to guide
data providers. In this way, the problem of duplicate data
collection can be avoided, enabling an efficient and
unified data collection.

Data control
function
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Fig. 3-3. Data collection for Al use cases based on the
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- 3.3 Distribution of Al Logical Function in 6G System

In traditional communication systems, the computing power is mainly deployed at the network side and used for computa-
tional processing of communication services. With the rapid development of the Al industry, intelligent processors such as graph-
ics processing units (GPUs), neural network processing units (NPUs), tensor processing units (TPUs), and other intelligent proces-
sors have continuously emerged. New types of computing power continue to emerge, and their cost, energy efficiency, and
computing level are all being improved day by day. Meanwhile, in the future mobile communication system, almost all network
elements need to be enhanced with Al. Therefore, as shown in Fig. 3-4, each network element will have its own use cases and
collaborative use cases across network element nodes, and different Al functions will be distributed in each network element
node. Specifically, single node use cases can be further divided into UE use cases, base station (BS) use cases, core network (CN)

use cases, and network management use cases. Cross-node use cases can be divided into UE-BS use cases, UE-CN use cases,
BS-CN use cases, and network management-BS use cases.
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Fig. 3-4. 6G Distribution of Al functions and use cases in the network

When deploying Al functions in physical nodes, different Al functions shall follow different principles.

Distribution of model training functions

Model training is a very critical part of 6G Al. Centralized training typically achieves the performance upper bound, but
requires data to be aggregated and then trained in one place, which may raises concerns on data privacy and data security.
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Data Privacy Data Security
The data of each network element directly or A centralized training architecture requires central-
indirectly contains information about the network ized data storage, and if the database is breached by a
element and its environment. The data can enhance the cyberattack, it will lead to massive data leakage.

value of the communication system with reasonable
application, but also at the risk of malicious use. At the
same time, data itself may be an asset of the data
source node. Therefore, there is a certain need for data
privacy/ownership protection requirements for the data
of each network element.

Therefore, there is a need to keep the data local for training in various cases. But this in turn faces the problems of limited
local data features, limited data volume, and limited computing power. Distributed learning is a solution to satisfy the data
privacy and security needs while guaranteeing sufficient training data and computing power. Distributed learning is a general
term for a class of learning methods whose core idea is that multiple nodes are involved in training, and the data does not need
to be aggregated to a centralized node. There are various distributed learning methods such as federated learning, swarm
learning, split learning etc. From the characteristics of different distributed learning architectures summarized in Table 3-1, it can
be seen that different distributed learning architectures have their own training modes, topologies, exchanged contents and

applicable scenarios.

Therefore, it is necessary to design a unified distributed framework to support multiple distributed learning methods, and

select the applicable learning method to provide services in specific business.

Table 3-1. Summary of characteristics of multiple distributed learning methods

Distributed learning Characteristics
approach

The most common distributed learning architecture generally consists of a central parameter
Federated learning server and multiple distributed client nodes, where models are trained at the client nodes and
aggregated at the server before being distributed

Swarm learning No central parameter server, no need to upload parameters to a central server for aggregation

A central parameter server and distributed client nodes each train a portion of a complete

Split learning [ network
neurat networ

When building a virtual network for distributed learning in @ mobile network, suitable nodes need to be selected to partici-
pate in the collaboration. The most important criterion for selecting nodes to participate in collaboration is the quantity and
quality of data on the node. In addition, the selection of collaborative nodes also needs to consider factors such as the comput-

ing power and transmission capacity of the nodes.
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Distribution of model inference functions

Data privacy and security issues also need to be considered in model inference. However, unlike model training, model
inference requires a small amount of data, and the risk of data privacy and security is relatively small. Therefore, under the
premise of ensuring data privacy and security, computation offloading can be more flexible during the model inference stage.

Akey requirement of model inference is inference latency. If the computing power of the data source node is abundant, the
inference should be completed at the data source node. However, if the computing power of the data source node is limited and
inference is still performed on the data source node, the computation latency will not be able to satisfy requirements. Given the
Al capabilities of different nodes and the different needs of Al services, the available Al capabilities within the network are charac-
terized by uneven distribution and dynamic changes. In this case, nodes with abundant Al capabilities (called assist nodes) can
be allowed to assist nodes with high demand for Al capabilities (called demand nodes) to accomplish specific Al inference tasks,
and then feedback the desired information to the demand nodes. This is a dynamic Al inference function distribution, at this time,
the inference delay consists of two parts: the computation delay and the transmission delay, and the key is how to reduce the
transmission delay. Therefore, the principle of selecting collaborative nodes is crucial. When selecting assist nodes, itis necessary
to consider multiple factors, such as the distance between the node and the demand node, transmission costs, computing

power, and other factors.

Distribution of model monitoring functions

Model monitoring requires near real time latency,
and failure to perform model state adjustments on time
will result in system performance degradation. Model
monitoring and decision-making about model state (e.g.,
madel activation/deactivation) are closely related. When
deploying model monitoring, it should facilitate early
decision-making. Thus, itis best to integrate the monitor-
ing metrics collection/computation  function and
decision-making function in the same node to avoid
delays caused by transmission, negotiation, and other
processes. There are also other possibilities by deploying
maonitoring metrics collection/calculation function based
on where the ground truth and model outputs are gener-
ated in order to avoid transmission delay caused by the

transmission of ground truth information.

By properly distributing Al functions in 6G networks,
higher execution efficiency and resource utilization can
be achieved, which helps to achieve efficient mobile

communication.
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3.4 Decoupling of Al Resources And Use Cases

Al resources include hardware resources and software resources. Hardware resources include GPUs, NPUs, TPUs, applica-

tion specific integrated circuits (ASICs), etc., and software resources include Al frameworks and algorithms.

There are certain tide effects in the demand for Al resources by the use cases of 6G Al, i.e., the demand for Al resources by
different use cases exhibit different patterns in time. In this regard, Al resources and use cases can be decoupled to achieve
better resource utilization and performance at a lower cost and expense by time division of the shared Al computation resources
across different use cases.

Currently, the design of Al use cases in 5G-Advanced does not take into account above mentioned shared computation
resource, which may lead to the following problems: 1) Poor compatibility of new Al use cases: since Al resources are tied to
specific Al use cases, new Al use cases cannot use existing Al resources. 2) Low efficiency of Al resource utilization: as shown in
Fig. 3-5(a), the communication equipment supports Al-based CSI compression, mobility enhancement, and beam prediction.
However, these three use cases do not necessarily need to infer at the same time, if only beam prediction requires model
inference at a certain moment, the remaining two Al use cases do not require inference, but the corresponding 2 Al resources

cannot be used for beamforming model inference, which makes it difficult to effectively utilize Al resources.

Use-cases

CSI compression

CSI compression
Al resource 1 ﬁ

Mobility enhancement

Mobility enhancement
Al resource 2 - Beam prediction

Beam prediction

Al resource 3 - e #e

Al resources

(a) Al use cases tied to specific Al (b) Multiple Al use cases share
resources Al resources

Fig. 3-5. Relationship between Al use cases and Al resources

To solve the above problems, 6G Al resources and Al use cases should be decoupled, and thus enable multiple use cases
sharing Al resources within device. When adding new Al use cases, existing Al resources within device can be directly reused
without updating Al hardware resources, which improves the compatibility of new Al use cases.

In addition, as shown in Fig. 3-5(b), if only the beam prediction use case requires model inference at a certain time, the
entire Al resource can be used to shorten the inference time and improve the utilization efficiency of Al resources. When multiple
use cases share Al software resources, it is necessary to consider whether the platforms of multiple use cases are compatible,

and whether the algorithm software interfaces of multiple use cases are compatible.
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In addition, the decoupling of Al resources and Al use cases is also beneficial to model training. After the decoupling of Al
resources and Al use cases, the Al resources will become a common resource. For Al tasks with high generality, multiple model
providers (e.q., different operators and UE vendors) can share Al resources, jointly train a model, and then distribute it to their

respective users. This can significantly improve the utilization of Al resources and the efficiency of model training.

The impact of the above design principles on the general Al design lies in the general resource interaction signaling. If Al
resources are tied to use cases, then the Al resource interaction signaling for different use cases will be different. When Al
resources are decoupled from use cases, the Al resource interaction signaling used by multiple use cases can be general. The Al
resource general interaction signaling can include node available resource report/naotification, Al model/functionality request to

accommodate needs of different available Al resources and so on.

It should be noted that the common resource interaction signaling can be used by different use cases between any two
nodes, but the interaction signaling is often different between different nodes such as UE-CN and UE-BS.

In addition to the decoupling of Al resources and use cases mentioned above, the sharing between UE-side modem-spe-
cific Al resources and UE general Al resources is also worthy of attention. With the popularization of Al, the Al software and
hardware capabilities of general Al chipset on UE side will be greatly improved, and may be much higher than the Al software
and hardware capabilities of modems. Thus, Al resources to enable 6G use cases should consider both within and outside
maodem possibilities, as shown in Fig. 3-6. The sharing of these two kinds of resources may lead to different latency for model
inference and the applicability to different use cases need to be further considered.

= = =] | General | 5 = = =|Er =
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= — = | chipset | =53 = — = | chipset | ==
i i L LD
(a) Barriers exist between modem and general (b) Al resource sharing between modem and
Al chipset general Al chipset

Fig. 3-6. Resource relationships between modems and general Al chipset

In the above scenario, the Al resource interaction mechanism can be designed based on the importance of Al use cases,
process requirements (or timeline requirements), and quality of service (QoS) requirements, for example, to allocate more Al
resources to use cases that have a greater impact on system performance. If two functions have a strict timing relationship, the
use case with the first timing should be prioritized for resource sharing. Similarly, use cases with high QoS requirements also
need to be given priority in allocating Al resources. For example, when the Al model/function resource request from UE to BS
contains multiple use cases, since each use case has different processing delay requirements, the prioritization order and
processing delay requirements of each use case, can be notified to BS, so that BS can decide the order in which the use cases are

to be executed based on these requirements.
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- 3.5 Diverse Learning Frameworks Supported by Model Transfer

In Chapter 2, we depict the blueprint of Al in mobile communications through a rich set of use cases. Itis possible to charac-
terize all Al use cases in terms of their application environments and extract the commonalities of the use cases, which in turn
can assist the design of Al-native system. Referring to the division idea in [9], we divide the Al use cases in mobile communica-
tions into four quadrants according to the static/dynamic and closed/open character of the environment, as shown in Fig 3-7.

“Static” means that the characteristics of the environment are limited and stable, while “dynamic” means that the charac-
teristics of the environment are not fixed and with uncertainty. “Closed” means that the output and subsequent actions of the
Alwill not affect the environment, while “open” means that the output and subsequent actions of the Al will affect the environ-

ment. For ease of understanding, we have given one use case in each quadrant of Fig. 3-7 as an example.

Dynamic environment

A

Transfer learning,
few-shot learning

Positioning

enhancement
Closed

Reinforcement
learning,
transfer learning

User scheduling

Open

environment

Zone/site specific
beam prediction

Supervised
learning

i environment
Wireless resource

allocation with stable
statistical distribution

Reinforcement
learning

Static environment

Fig. 3-7. Environment-based use case segmentation

As shown in Fig. 3-7, different types of use cases generally require different training/learning approaches. Use cases in a
closed-static environment are the simplest type of use case, where a model with good generalization can be obtained through
supervised learning and can be directly deployed for inference. In a closed-dynamic environment, it is difficult to obtain a
well-generalized model through offline training, so it is necessary to use techniques such as transfer learning and few-shot
learning to adapt the model to the environment. The key in an open-static environment is that there is strong interaction between
the use case and the environment or system, and the environment or system will change based on the results given by the
model. Reinforcement learning is an important means to solve such problems. The open-dynamic environment is the most
complex environment, and requires a combination of techniques such as transfer learning and reinforcement learning to
achieve excellent inference performance. In addition, data in the network are often distributed across different nodes, and
considering the need for data privacy, distributed learning is also a very valuable learning architecture.

In summary, 6G Al needs to support multiple learning methods to meet a diverse range of Al use cases. Among the various
learning frameworks mentioned above, a key function that is required is cross domain model transfer. Specifically, the require-

ments for model transfer in different learning framewaorks are as follows:
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Transfer learning/few-shot
learning

Federated learning Split learning

transfer of complete or partial models, or mod- model or gradient transmission is
el-related information (such as gradients) also required to support flexible
between different nodes participating in the model split training across differ-
federation is required to gain a model with good ent nodes.

the base model needs to be
transmitted from one node to
anaother.

per’formance.

Reinforcement learning Supervised learning
if the model update node and if the model training node and
inference node are separate, the inference node are in different
updated model after each learn- domains, model transfer is also

ing loop also needs to be trans- needed.
ferred to the inference node.

Maodel is a new type of information that emerged after Al was introduced into mobile communication. It does not belong
to the traditional service information or control information in mobile communication systems. Therefore, to support the various

Al learning framewaorks for 6G, it is necessary to define corresponding signaling and procedures clearly from the start of 6G.

One of the key issues for model transfer across domains is what format to use for the transferred model: public format or
proprietary format? A public format is a model description format that can be recognized by both ends, and a proprietary format
is a private model description format that is specific to a vendor. Table 3-2 compares the detailed characteristics of the two
formats. It can be seen that the main advantage of public formats is the high flexibility of model updating and support for
zone/site/specific models since cross domain allows flexible model training entities that is most accessible to zone/site specific

data sources. To support cross domain model transfer, the industry needs to define such a commonly recognizable format.

Table 3-2 Summary of public and proprietary format characteristics of Al models

Characteristics\Format Public format Proprietary format
Whether model information can be shared across vendors Yes No

Dependency on vendors Low High

Flexibility in model update entities Good Bad*
Support for zone/site specific models Effective Limited**

Offline Optimization Requirements Small Large
Multi-vendor deployment flexibility Good Bad

Model storage overhead Low High

*Public format allows any entity with data to update the model while proprietary format only allows the entity to compile the model to
update

**In public format, entity most accessible to zone/site specific data is easily involved; in proprietary format, the model compilation entity
may not be accessible to zone/site specific data

Based on open format model transfer, multiple learning frameworks in 6G will provide support for diverse use cases,
guaranteeing that models are better matched to the complex and changing environment of mobile communication, and achiev-

ing better inference performance.
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- 3.6 Continuous Self-Evolution

Wireless environment and system requirements will continue to change over time, so use cases and models need to evolve
continuously to adapt to the system. If this evolution still relies on manual parameter tuning and use case selection, the efficiency
of the evolution will be greatly reduced. Therefore, how to automate the evolution process of models and use cases is a problem
worth further research. In the future, mobile communication systems that integrate Al will continuously and automatically collect
data, extract knowledge, and iteratively interact with the environment and users during operation. The system will also automati-
cally update and retire old modules, derive new modules, and gradually build more efficient communication systems. This
process is called self-evolution. The foundation for Al self-evolution is built on native unified lifecycle management and unified
data collection based on the data plane. Al self-evolution can be categorized into three levels from level 1 (L1) to level 3 (L3), with

the self-evolution capability increasing step by step.

L1 self-evolution

Al model parameter self-evolution is shown in Fig. 3-8. At L1, self-evolution is achieved by automatically updating the
model parameters within a short period of time to adapt to changes in service requirements and deployment environments. In
this stage, self-evolution mainly relies on online learning methods, such as transfer learning, meta-learning, and reinforcement
learning. By predefining an online framework for model parameter adjustment, specific models can be automatically trained,
validated, and their parameters can be replaced through data collection, online training, model validation, and parameter value

adjustments.

2 2

Fig. 3-8. Schematic diagram of L1 self-evolution
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L2 self-evolution

The self-evolution of Al model hyperparameters (e.g., inputs, outputs, structures), as shown in Fig. 3-9. L2 self-evolution is
an advanced version of L1 self-evolution, which not only solves the problem of parameter adaptation, but also automatically
finds out the most suitable model hyperparameters for the specific use case based on data in the actual environment. In this
stage, self-evolution mainly relies on technologies such as automatic machine learning (AutoML) and neural architecture search
(NAS) to achieve automatic selection of the most suitable model hyperparameters for the specific use case. By predefining an
online framework for model architecture adjustments, specific use cases can be automatically trained, validated, and their

models can be replaced through data collection, online model search and training, and model validation.

> | Vg e

Fig. 3-9. Schematic diagram of L2 self-evolution

L3 self-evolution

Self-evolution of Al use cases, as shown in Fig. 3-10. This level of self-evolution goes beyond the boundaries of specific use
cases and allows for the exploration of new use cases and the elimination of old ones. The process of use case change is natural-
ly accompanied by L1 and L2 self-evolution. L3 self-evolution achieves use case self-generation and requires advanced
functions such as flexible data collection and use case self-exploration to promote the updating, restructuring, and retirement of
old use cases and the birth of new ones.

BE - BE&E= BE8
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Fig. 3-10. Schematic diagram of L3 self-evolution
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From the description of the three self-evolution stages, it can be seen that the L1 self-evolution is the foundation of the
whole self-evolution system. In order to achieve the L1 self-evolution, new operations such as automatic evolution triggering,
automatic data collection for training, automatic model training, automatic model validation, and automatic replacement of
model parameter values need to be introduced. Among them, automatic evolution triggering includes collecting execution
results or monitoring results to determine whether to initiate self-evolution. After the self-evolution is triggered, the management
function sends data collection, training strategy and validation-related parameter configurations to the training function.
Automatic data collection for training refers to the data source collecting data according to the data collection request and
providing the data to the training function. Automatic model training refers to the training function conducting model training
according to the training strategy configured by the management function, including learning methods, training hyperparame-
ters, optimization function indications, and training-validation dataset partitioning methods. Automatic model validation refers
to the training function determining the model performance based on the validation dataset partitioning method and validation
KPI configured by the management function. If the validation result meets the pre-set threshold, the training function will send
the model parameters and version to the inference function. The inference function will use the new model parameters for
parameter value replacement and notify the training function of the successful parameter update. The training function will then
provide the management function with the model version and validation performance feedback.

Compared to L1 self-evolution, L2 self-evolution has some new requirements: the inputs and outputs of the model are
adjustable in L2 self-evolution, and the data collection configuration needs to be adjustable as well. In L1 online automatic
training, hyperparameters and optimization functions are fixed, but in L2 self-evolution, the model structure, training hyperpa-
rameters, training algorithms, optimization functions, etc. are adjustable. Therefore, in order to achieve L2 self-evolution, it is
necessary to make the automatic data collection for training and automatic model training of L1 self-evolution more flexible, and
also need to add new operations such as automatic updates of model structure and parameters. The flexibility of the model
training strategy can be achieved through various model attempts or technologies such as AutoML and NAS. Automatic model
structure and parameter updates refer to the training function sending updated model structure, parameters, and version to the
inference function. After the inference function completes the model update, it will provide feedback to the training function

indicating the success of the model update.

To achieve L3 self-evolution, more flexible data collection and model deployment functionalities need to be introduced
compared to L2 self-evolution. In L2 self-evolution, data collection configuration corresponds to a specific use case. However, in
L3 self-evolution, data collection configuration can be used to collect data for training Al models for current non-Al functions or
to collect data for training Al models for the functionality of the two fused Al use cases. Therefore, more flexible data collection
configuration is needed. Flexible model deployment means supporting the replacement of a function from non-Al to Al, or Al to

non-Al, or multiple independent functions to fused Al functions.

In summary, the realization complexity of self-evolution increases step by step from L1 to L3. We believe that L1 self-evolu-
tion is most likely to be realized at 6G. The implementation of L2 self-evolution depends on the maturity of AutoML technology

and the growth rate of computing power, so it is also possible to achieve in 6G. The L3 self-evolution requires flexible data collec4

tion and interaction interface configuration, and belongs to a longer-term vision.
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Chapter 4

Conclusions

The convergence of Al and communication involves multiple dimensions such as
air interface, network architecture, protocols, algorithms, etc., and will deeply affect the
scenarios or functions such as sensing, computing and control. Therefore, the conver-
gence of Aland communication is expected to drive the evolution of future communica-
tion paradigm and the change of network architecture, which is of great significance for

the research of future mobile communication technology.

The use cases for the convergence of Al and communication are very broad,
involving not only multiple layers of the mobile communication netwark, but also
multiple collaboration modes. Its values can be demonstrated in both impraving the
performance and reducing the complexity of mobile communication systems. With the
further research in academia and industry as well as the popularity of Al technologies,
there will emerge more and more high-value use cases.

To support such a wide range of use cases, itis necessary to set reasonable design
principles based on the common characteristics and requirements of various use cases
at the beginning of 6G design. Our goal is to create a generic, flexible and resource
efficient 6G Al architecture that supports various new learning architectures and
self-evolving. We believe that 6G will be an intelligent system enabled by numerous Al

use cases and flexible Al capabilities.
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Abbreviations
3GPP 3rd Generation Partnership Project
4G The fourth generation mobile communication systems
5G The fifth generation mobile communication systems
6G The sixth generation mobile communication systems
AI4NET Al for Network
AMC Adaptive Modulation and Coding
AMP Approximate Message Passing
AR Augmented Reality
ASIC Application Specific Integrated Circuit
AutoML Automatic Machine Learning
BLER Block Error Rate
CN Core Network
csli Channel State Information
CSI-RS Channel State Information Reference Signal
DL-TDO Downlink Time Difference of Arrival
DMRS De-Modulation Reference Signal
DPD Digital Pre-Distortion
EVM Error Vector Magnitude
GPU Graphics Processing Unit
HARQ Hybrid Automatic Repeat request
LTE Long Term Evolution
MIMO Multiple Input Multiple Output

NAS

Neural Architecture Search



NET4AI
NLOS
NMSE
NPU
NR
OFDM
PA
PAPR
QoS
RAN
RRM
RU
TOA
TPU
TR
TRP
TRS
TTT
UE
UPF

VR

Network for Al

Non line of Sight

Normalized Mean Square Error
Neural Network Processing Unit
New Radio

Orthogonal Frequency Division Multiplexing
Power Amplifier
Peak-to-Average Power Ratio
Quality of Service

Radio Access Network

Radio Resource Management
Resource Utilization

Time of Arrival

Tensor Processing Unit

Tone Reserve
Transmission/Reception point
Tracking Reference Signal
Time-To-Trigger

User Equipment

User Plane Function

Virtual Reality
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